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SUMMARY

The goal of our paper is to demonstrate the cost-effective use of the Lanczos method for estimating the
critical time step in an explicit, transient dynamics code. The Lanczos method can give a significantly
larger estimate for the critical time-step than an element-based method (the typical scheme). However,
the Lanczos method represents a more expensive method for calculating a critical time-step than
element-based methods. Our paper shows how the additional cost of the Lanczos method can be
amortized over a number of time steps and lead to an overall decrease in run-time for an explicit,
transient dynamics code. We present an adaptive hybrid scheme that synthesizes the Lanczos-based
and element-based estimates and allows us to run near the critical time-step estimate provided by the
Lanczos method.
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1. Introduction

Codes using explicit time integration techniques are important for simulating transient
dynamics problems involving large deformation of solids with various nonlinear effects (contact,
nonlinear materials, element death, etc.). The second order central difference operator used
in explicit codes is stable if the time step is no larger than the critical time step. For most
problems in solid mechanics, the critical time step is extremely small and the number of time
steps required for a typical analysis is quite large. Therefore, the accurate, efficient, and reliable
calculation of the critical time step is of fundamental importance.

The element-based method [1] is an efficient method for producing a critical time step
estimate at every time step. However, it can produce a conservative estimate for the critical
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time step in many cases. The Lanczos [5] method is a reliable procedure for producing a time
step that is the theoretical maximum value for a structure and is usually much better than the
element-based estimate. The cost of obtaining a Lanczos based estimate will not offset the cost
benefit of the increased value for the critical time step. Therefore, it is not feasible to call the
Lanczos method at every explicit dynamics time step. In this paper we outline a cost-effective
method for utilizing the Lanczos method (together with an element-based scheme) for the
critical time step estimation. Therefore,

There are two crucial issues that must be addressed in combining the Lanczos-based and
element-based estimates. First, the Lanczos-based time step estimate must be used for two
to three times the number of explicit time integration steps required to recover the cost of
the Lanczos method if we are to see a noticeable reduction in overall computation times for a
problem. Second, the Lanczos method provides an overestimate of the critical time step and
so we need an effective scheme to scale back the Lanczos-based critical time step estimate.

We also remark that in addition to the increased efficiency that can be achieved with the
Lanczos-based time step, we also have the added benefit of increased accuracy. For explicit
transient dynamic codes, using a time step as close as possible to the critical time step [4]
gives the most accurate answer. Reducing the time step in an explicit transient dynamics code
actually increases the error.

Our paper is organized as follows. Section 2 discusses the critical time step and motivates a
Lanczos-based estimate. The Lanczos iteration and method are briefly introduced in section 3.
A cost benefit analysis of the element-based and Lanczos-based approximations to the critical
time is considered in section 4. A practical implementation within an explicit dynamics code is
the subject of section 5. Several numerical examples are presented in section 6, and we provide
our conclusions in section 7.

2. Critical time step

Let K and M be the stiffness and mass matrices arising in an explicit dynamics simulation
so that M is a diagonal matrix due to mass lumping. The critical time step for second order
central time differencing is bounded from above by 2ω−2

max where ω2
max is the largest eigenvalue

of the generalized eigenvalue problem

Ku = Muω2
max,

(
K,M ∈ Rn×n

)
, (1)

where we assume that ω2
max is positive. An inexpensive [2] upper bound to ω2 is given by the

maximum element eigenvalue ω2
max,e over all the element eigenvalue problems

Keue = Meueω2
e ,

(
Ke,Me ∈ Rne×ne

)
, (2)

where ne � n. Therefore, ω−2
max,e ≤ ω−2

max and we have a lower bound for the critical time step.
The maximal element eigenvalue is typically computed analytically [1] for the finite elements
that are typically used in transient dynamics.

The Lanczos method rapidly provides a lower bound ω2
max,L to ω2

max so that

ω−2
max,e ≤ ω−2

max ≤ ω−2
max,L. (3)

In fact, the Lanczos iteration is sharp so that ω−2
max / ω−2

max,L so that with care, an excellent
approximation to the critical time step is computed for a modest cost. This approximation
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may be dramatically superior to the standard element based estimate. The details of a careful
use of the Lanczos-based estimate is the subject of section 5.

3. Lanczos iteration

The Lanczos reduction rapidly provides approximations to the extremal eigenvalues of a
symmetric A ∈ Rn×n, in particular the largest in magnitude eigenvalue. Suppose that

AQj = QjTj + fjeT
j , (4)

is a Lanczos reduction of length j where fj ∈ Rn, and ej ∈ Rj contains column j of the identity
matrix In ∈ Rn×n. If we denote

Tj =


α1 β2 · · · 0
β2 α2 · · · 0
...

. . . βj

0 · · · βj αj

 , αi, βi ∈ R

and
Qj =

(
q1 q2 · · · qj

)
, qi ∈ Rn

then the familiar Lanczos three-term recurrence is recovered by equating column j of (4) to
obtain

fj = Aqj − qjαj − qj−1β
T
j−1. (5)

Furthermore, because of the orthonormality of Qj , we have

αj = qT
j Aqj , (6a)

qj+1βj+1 = fj , (6b)

qT
i fj = 0, i = 1, . . . , j (6c)

and so qj+1 = fjβ−1
j+1, where we assume that βj+1 is non-zero. We define a Lanczos iteration

to be that computing Aqj , αj , βj+1, and fj . We define the Lanczos method that of computing
m iterations and computing the largest in magnitude eigenvalue of Tm.

The largest eigenvalue of the symmetric tridiagonal matrix Tj approximates the largest in
magnitude eigenvalue of A. We can determine the quality of the approximation produced by
an eigenpair of Tj . If we postmultiply (4) by s where Tjs = sθ (and ‖s‖ = 1), then

A(Qjs)− (Qjs)θ = fj(eT
j s). (7)

In words, the residual of the approximate eigenpair (Qjs, θ) is proportional to fj (note that
eT

j s is notation for the last component of s). The implication is that we can easily monitor the
quality of the approximation produced by the Lanczos method. If θ is the largest in magnitude
eigenvalue of Tj , then θ ≤ ω2

max ≤ ‖fj‖2 |eT
j s|+ θ (see [7] for a discussion). Hence,

1
‖fj‖2 |eT

j s|+ θ
≤ ω−2

max ≤
1
θ
. (8)

We also remark that the norm of the residual is a non-increasing function of j; again see [7].
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The Lanczos iteration is adapted for computing the largest eigenvalues of (1) by replacing
A with M−1K and computing an M-orthonormal Qj . This orthonormality is needed so that
M−1K is symmetric in the inner product induced by M. See [6, 7] for further discussion and
implementations.

The cost of a careful implementation of a Lanczos iteration, j > 1, is one matrix-vector
product with K and M−1, and two vector products and vector subtractions. Within an explicit
dynamics code, the cost of computing a Lanczos vector is approximately the cost of an internal
force calculation, represented by the matrix-vector product Kqj . Therefore, we approximate
the cost of computing the Lanczos-based time step estimate as

mτ (9)

where m denotes the number of Lanczos iterations and τ represents the CPU (central processor
unit) time needed for an element-based explicit dynamics time integration step.

The Lanczos method only requires knowledge of K via its application on a vector. If internal
force calculations are used for the needed matrix-vector products, the Lanczos vectors qj are
scaled so that they represent velocities associated with small strain. When these scaled vectors
are sent to the internal force calculation, the internal force calculation becomes a matrix-vector
product with a (constant) tangent stiffness matrix KT .

4. Cost benefit analysis

This section provides a simple model for assessing the cost of using the Lanczos method for
computing an estimate of the critical time step. We assume that Lanczos-based time step is
valid for nL time integration steps. We address the important issue of the adapting the time
step when we present the details for practical use of the Lanczos method in a subsequent
section.

Denote by ∆tL and ∆te the time steps estimate of the critical time step computed by the
Lanczos and element-based methods, where the ratio ρ of ∆tL to ∆te is at least as large as
one because of (3). After nL time steps, the dynamics simulation is advanced in time nL∆tL.
Let ne be the number of element-based time steps so that ne∆te ≤ nL∆tL < (ne + 1)∆te. In
terms of ρ, we have the relationship

ne ≤ ρnL < ne + 1, (10)

so bounding the number of Lanczos-based explicit integration steps in terms of ρ and the
number of element-based integration steps.

Let us examine the computational costs in terms of CPU time in performing the above nL

and ne integration steps. Denote by τ the CPU time for an element-based time integration
step and assume that it is dominated by the cost of an internal force calculation. Using (10),
the CPU time of nL time integration steps is

(nL + m)τ, (11)

and the CPU time of ne time integration steps is neτ . Equating these two CPU times,
determines when the cost of both approaches is equivalent and results in the relationship

n̂e = m + n̂L. (12)
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Using (12) within (10) gives
m

ρ− 1
≤ n̂L <

m + 1
ρ− 1

(13)

so bounding the minimum number of Lanczos-based time integration steps in terms of the
number of Lanczos iterations and ρ so that the cost of the computing the Lanczos-based time
step is amortized.

Our cost benefit analysis provides the “break-even” point at which the Lanczos method
becomes cost-effective by overcoming the associated overhead. For example, let ρ = 1.25 and
m = 20 so that n̂L is bounded from below by 80, and by (11) n̂e = 100. Hence, the time
integrations with the Lanczos-based and element-based estimates of the critical time step give
the same simulation time for the same CPU time. If we use the Lanczos-based time step ∆tL
for more than 80 time integrations steps, then the Lanczos-based approach is cost-effective.

A Lanczos-based critical time estimate is cost effective if m is small and ρ is not close to
one. The size of m is dependent upon the ability of the Lanczos method to rapidly provide
an accurate approximation to ω2

max. If ρ approaches one, then the Lanczos-based critical time
step approaches the element-based critical time step, implying that n̂L must increase to offset
the cost of the m Lanczos iterations. Section 6 demonstrate that m is small and that ρ is not
close to one for realistic problems.

Our section ends by considering the additional cost involved with contact. The addition of
contact to an analysis can add computational costs to a time step that are as large as or larger
than the internal force calculations. Therefore, for an analysis with contact, running at a larger
time step than the element-based estimate can have an even greater impact on reducing CPU
time for an analysis.

The above analysis is easily extended to the case where we have contact. If the CPU time
of contact over a time step is some multiple γ of τ , then in analogy to (12) and (13), we have

(1 + γ)n̂e = m + (1 + γ)n̂L, (14)

and
m

(ρ− 1)(1 + γ)
≤ n̂L <

m + 1 + γ

(ρ− 1)(1 + γ)
(15)

Again, for example, let ρ = 1.25 and m = 20 and assume the computational cost of contact
calculations is the same as an internal force calculation so that γ = 1. Hence, the break-even
point is n̂L = 40 and n̂e = 50. The additional cost of the contact calculations within the time
integration reduces the break-even point over that with no contact (γ = 0).

5. Using the Lanczos-based estimate

The previous section shows how the repeated use of a Lanczos-based time step estimate could
be cost-effective within an explicit transient dynamics simulation. This section presents an
adaptive scheme that combines the Lanczos-based estimate with an element-based estimate of
the critical times-step over a number of explicit time integration steps.

Section (2) explained that the Lanczos method provides an approximation to the maximum
eigenvalue of (1) from below so overestimating the critical time step. Therefore, we scale
back the Lanczos-based time. The scheme to determine a scaled-back value employs the
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element-based time step estimate. Again, let ∆tL and ∆te be the time steps computed by
the Lanczos and element-based methods. The scaled back estimate for the critical time step,
∆ts, is computed from the equation

∆ts = ∆te + fs(∆tL −∆te), (16)

where fs is a scale factor. (The value for fs ranges from 0.9 to 0.95 for our problems—a rigorous
estimate can be made by using (8).) This value of fs results in ∆ts close to and slightly less
than the critical time step. Once ∆ts is determined, the ratio

tr =
∆ts
∆te

is computed. This ratio is then used to scale subsequent element-based estimates for the critical
time step. If ∆te(n) is the nth element-based time step after the time step where the Lanczos
method is computed, then the nth time step computed is

∆t(n) = tr∆te(n). (17)

The ratio tr is used until the next call to the Lanczos method. The next call to the Lanczos
method is controlled by one of two mechanisms. First, the user can set the frequency with which
the Lanczos method is called. The user can set a parameter so that the Lanczos method is
called only once every n time steps. This number remains fixed throughout an analysis. Second,
the user can control when the Lanczos method is called based on changes in the element-based
time step. For this second method, the change in the element-based critical time step estimate
is tracked. At the nth step after the call to the Lanczos iteration, the element-based time step
is ∆te(n). If the value

|∆te(n) −∆te|
∆te

(18)

is greater than some limit set by the user, then the Lanczos method is called. If there is a small,
monotonic change in the element-based time step over a large number of time integration steps,
this second mechanism will result in the Lanczos method being computed. If there is a large,
monotonic change in the element-based critical time step over a few time steps, the Lanczos
method will also be called.

These two mechanisms for calling the Lanczos method may be combined resulting in an
adaptive scheme for estimating the critical time step during an explicit transient dynamics
simulation. For example, suppose the second mechanism, the mechanism based on a change in
the element-based time step, results in a call to the Lanczos method. This resets the counter
for the first mechanism, the mechanism using a set number of time steps between calls to the
Lanczos iteration.

6. Numerical experiments

This method for reusing a Lanczos-based time step estimate has been implemented in
Presto [3], and employed within a number of explicit dynamics simulations. We discuss several
of these examples.
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6.1. Example one

The Lanczos method has been used to obtain a critical time step estimate for a cubic block
consisting solely of cubic elements—a 10 × 10 × 10 mesh of eight-node hexahedral elements.
We know that, for a cubic eight-node hexahedral element, the element-based estimate is
conservative by a factor of 1/

√
3. The Lancozs method yields a critical time estimate for

this mesh that is ρ =
√

3 (approximately 1.732) times larger than the element-based estimate.
This is done by using 20 Lanczos vectors.

6.2. Example two

Critical time step estimates were made for two mechanical systems. The systems consisted
of cylindrical metal cans containing a variety of components. Some of these components
have relatively simple geometries, while other components have complex shapes. A number
of the components with complex shapes are a foam material used to absorb impact loads. One
component was modeled with approximately 250,000 degrees of freedom, and the other one
was modeled with approximately 350,000 degrees of freedom. For both of these models, a good
estimate for the maximum eigenvalue was obtained with the Lanczos method by computing
only twenty Lanczos vectors. For the model with 250,000 degrees of freedom, an actual analysis
was run. The value for ρ for this problem was 1.83. The break-even point for this case (nL = 20
and ρ = 1.83) is ne = 45. It was possible to use the same scale factor for 1700 time steps for
this analysis, which is well above the break-even point. The extended use of the Lanczos based
estimate reduced the computation cost by over 56%.

6.3. Example three

A study of a large-scale model involving 1.7 million nodes (5.1 million degrees of freedom)
showed that only 45 Lanczos vectors were required to obtain a good estimate of the maximum
eigenvalue. The value of ρ for this problems was 1.2. Use of this Lanczos based estimated for
this problem would be extremely cost-effecttive.

7. Conclusions

Our paper presented a cost-effective use of the Lanczos method for estimating the critical
time step in an explicit, transient dynamics code. The Lanczos method can give a significantly
larger estimate for the critical time-step than an element-based method (the typical scheme).
Our adaptive hybrid scheme synthesizes the Lanczos-based and element-based estimates and
allows us to run near the critical time-step estimate provided by the Lanczos method.

Not all problems will lend themselves reuse of one Lanczos-based estimate for thousands of
time steps. However, if it is possible to use the Lanczos-based estimate for two to three times
the number of time steps required for break-even, we begin to see a noticeable reduction in
the total CPU time required for a problem.

In addition, to the increased efficiency we can achieve with the Lanczos iteration, we also
have the added benefit of increased accuracy. For explicit transient dynamic codes, using a
time step as close as possible to the critical time gives the most accurate answer. Reducing
the time step in an explicit transient dynamics code actually increases the error.
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